翻訳と辞書
Words near each other
・ Coyhaique tuco-tuco
・ Coyi Banda
・ Coykendall Lodge
・ Coyle
・ Coyle and Cassidy School
・ Coyle and Sharpe
・ Coyle Creek
・ Coyle Girelli
・ Coyle v. Smith
・ Coyle, Oklahoma
・ Coyllurqui District
・ Coylton
・ Coylton Coila F.C.
・ Coylumbridge
・ Coxeter complex
Coxeter element
・ Coxeter graph
・ Coxeter group
・ Coxeter matroid
・ Coxeter notation
・ Coxeter's loxodromic sequence of tangent circles
・ Coxeter–Dynkin diagram
・ Coxeter–James Prize
・ Coxeter–Todd lattice
・ Coxey's Army
・ Coxey, Alabama
・ Coxford
・ Coxford Priory
・ Coxford, Cornwall
・ Coxford, Norfolk


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Coxeter element : ウィキペディア英語版
Coxeter element

In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter.
==Definitions==
Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order.
There are many different ways to define the Coxeter number ''h'' of an irreducible root system.
A Coxeter element is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order.
*The Coxeter number is the number of roots divided by the rank. The number of reflections in the Coxeter group is half the number of roots.
*The Coxeter number is the order of any Coxeter element;.
*If the highest root is ∑''m''iα''i'' for simple roots α''i'', then the Coxeter number is 1 + ∑''m''i
*The Coxeter number is the dimension of the corresponding Lie algebra is ''n''(''h'' + 1), where ''n'' is the rank and ''h'' is the Coxeter number.
*The Coxeter number is the highest degree of a fundamental invariant of the Coxeter group acting on polynomials.
*The Coxeter number is given by the following table:
The invariants of the Coxeter group acting on polynomials form a polynomial algebra
whose generators are the fundamental invariants; their degrees are given in the table above.
Notice that if ''m'' is a degree of a fundamental invariant then so is ''h'' + 2 − ''m''.
The eigenvalues of a Coxeter element are the numbers ''e''2π''i''(''m'' − 1)/''h'' as ''m'' runs through the degrees of the fundamental invariants. Since this starts with ''m'' = 2, these include the primitive ''h''th root of unity, ''ζh'' = ''e''2π''i''/''h'', which is important in the Coxeter plane, below.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Coxeter element」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.